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Abstract

The stratigraphy and sedimentology of the unconformity-bounded Fair Point, Manitou Falls and Lazenby
Lake formations of the Athabasca Group were examined in the Maybelle River—Net Lake area of
northeastern Alberta. The lowermost Fair Point Formation is subdivided into two members: the lower
and upper Fair Point Formation. The lower Fair Point Formation consists of locally occurring, massive

to planar-laminated siltstone units, interbedded with and overlain by matrix- and clast-supported pebble
conglomerate and pebbly sandstone. It is conformably overlain by massive and crudely crossbedded,
coarse-grained sandstone of the upper Fair Point Formation. Deposition of the Fair Point Formation
commenced with shallow lacustrine sedimentation in fault-controlled paleovalleys that were subsequently
infilled with locally derived pebble conglomerate. These valleys are overlain by progradational alluvial-
plain deposits. The overlying Manitou Falls Formation consists of a basal, crossbedded, medium- to
coarse-grained sandstone unit and an upper, ripple-laminated to crossbedded, medium-grained sandstone
unit. These are assigned to the Manitou Falls ‘c’ and ‘d” members, respectively. Deposition of the
Manitou Falls Formation occurred in relatively low velocity, perennial, braided river system tracts that are
traceable across the basin. The uppermost Lazenby Lake Formation is incompletely preserved within the
study area. This unit consists of massive and ripple-laminated, pebble-bearing sandstone with convolute
bedding. Initial sedimentation of the Fair Point Formation was fault controlled and probably affected

by extensional tectonics related to regional thermal activity that postdated the Trans-Hudson Orogeny.
The sedimentological characteristics and distribution of the overlying Manitou Falls and Lazenby Lake
formations suggest a significant change in the regional tectonic regime. The exact mechanism is unclear,
but may be related to late-stage post—Trans-Hudson Orogeny intrusions or the effects of dynamic loading
combined with regional, thermally induced subsidence.
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1 Introduction

The EXTECH IV uranium project is a government-university-industry co-operative program aimed

at enhancing the four-dimensional geoscience knowledge of the Athabasca Basin and developing new
exploration methods for deep uranium deposits. This study is part of subproject 4, which addresses the
regional and detailed stratigraphy of the Athabasca Basin (see Jefferson and Delaney, 2000), a globally
important source of uranium. A high-grade uraniferous zone, containing 21% U,O, was recently
intersected across a 5 m interval in drillhole MR-39 at Maybelle River, Alberta (e.g., Kupsch and
Catuneanu, 2002). Discovery of this mineralization has led to renewed efforts to better understand the
stratigraphy of the Alberta portion of the Athabasca Basin.

This project builds on a regional stratigraphic study by Ramaekers (2003, 2004) and a localized
stratigraphic-alteration study by Kupsch and Catuneanu (2002). The study area is situated around two
north-northwest structural trends, the Maybelle River trend and the Net Lake trend. The main goals of
this study were to 1) examine and reassess the regional stratigraphy in these areas, 2) study the regional
diagenesis in the area, and 3) place the stratigraphy of the Net Lake—Maybelle River area into the context
of a depositional and tectonostratigraphic model for the western Athabasca Basin.

11 Location of Study Area

The ca. 1700 Ma Athabasca Basin is located in northern Saskatchewan and northeastern Alberta

The basin encompasses a surface area of 80 000 km?, of which Alberta only contains
approximately 10%. The study area is located in the Fort Chipewyan 1:250 000 map sheet (NTS 74L),
between latitudes 58°08° and 58°13’N and longitudes 110°60° and 110°76’W, encompassing an area of
approximately 60 km?.

1.2 Methodology

Twenty-six cores were logged in the summer of 2002 at the Alberta Geological Survey Mineral Core
Research Facility (MCRF) in Edmonton. Cores were logged in accordance with the methodology
developed for the EXTECH IV subproject 4 (see Yeo et al., 2001b; Ramaekers, 2003). Thirty-seven
parameters were examined on a metre-by-metre basis for each drillcore. |l able 1| contains a complete list
of the parameters (Jefferson et al., 2001) and the drillhole information is compiled in Iéppendix 1]

Data were collected on Palm®hand-held computer devices and downloaded daily into an Access®
database, where they could be modified for use in other programs (e.g., Excel®, Rockware®, Logplot®).
Several key parameters used later to compile lithologs included maximum grain size, percentage of grains
over 2 mm, intraclast aggregate thickness, percentage of conglomerate, percentage of fines and percentage
of matrix clay. Alteration characteristics, including silicification, friability, tectonic structure, accessory
minerals and replacement structures, were also compiled into similar-style logs.

1.3 Previous Work

A summary of studies completed in the Athabasca Basin prior to 1980 is provided in Ramaekers (1990).
Ramaekers (1978, 1979, 1980, 1981) carried out the first comprehensive study on the Athabasca Group,
based on scarce outcrop and regional drillcore studies. Wilson (1985) completed the first regional
stratigraphic study in the Alberta portion of the Athabasca Basin. A review of the mineralization and
alteration history of the Athabasca Basin was later compiled by Quirt (1997). The EXTECH IV uranium
study provided a plethora of recent publications on the Athabasca Basin, including regional stratigraphic
studies in Saskatchewan (Yeo et al., 2001a, 2002) and Alberta (Ramaekers, 2003, 2004); stratigraphic
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Figure 1. Location of the study area in relation to the Maybelle River and Net Lake trends, and of the logged drillcores
(subcrop geology modified from Ramaekers et al., 2001).
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Table 1. Parameters used for logging cores from the Athabasca Group (modified from Jefferson et al., 2001).

Parameter Variables
DepthFrom Number (m), equal to the previous “Depth to” value
DepthTo Number (m)
%CoreRecovery Number (%)
. n, not visible; t, trace; tm, mostly trace, less moderate; mt, mostly moderate, less trace; m,
MatrixClay

minor to moderate; a, abundant

CLR_Darkness

w, white; p, very pale to pale; m, moderate to dark; d, dark

CLR_Colour

Bk, black; Bn, brown; BR, black-red; C, cream; Gn, green; Gy, grey; M, maroon (brick);
O, orange; P, pink; Pu, purple; R, red (bright); W, white; Y, yellow; YG, yellow-grey; n, no
colour alteration

CLR_Pattern

B, bedding related; F, fracture related; G, grain-size related; Ld, Liesegang dark grey; Lg,
Liesegang medium grey; Lr, Leisegang, bright to pale red; M, mottled, pale on dark or
reverse; Pdp, patchy, dark background, pale patches; Ppd, patchy, pale background, dark
patches; Sd, spot, dark; Sp, spot, pale; Srw, spot, outside dark or red, inside pale; D, dots,
speckled, usually specular hematite; U, uniform

C, competent, hard to break; e, competent, breaks easily; f, friable; v, very friable; u,

Friability unconsolidated; h, hard, mudstone only (fingernail does not scratch); s, soft, mudstone
only (fingernail gouges)
Silicification n, none; w, weak; m, moderate (sparkles); s, strong, tombstone

TGS_10% (fine tail)

B, boulder (>256 mm); cl, cobble, large (128-256 mm); cs, cobble small (64-128 mm);
pebble, very large (32-64 mm); pebble, large (16-32 mm); pebble, medium (8-16 mm);
pebble, small (4-8 mm); granule (2-4 mm); vc, very coarse sand; ¢, coarse sand, m,
medium sand; f, fine sand; vf, very fine sand, s, silt; y, clay

TGS_largest (medium
tail)

B, boulder (>256 mm); cl, cobble, large (128-256 mm); cs, cobble small (64-128 mm);
pebble, very large (32-64 mm); pebble, large (16-32 mm); pebble, medium (8-16 mm);
pebble, small (4-8 mm); granule (2-4 mm); vc, very coarse sand; ¢, coarse sand; m,
medium sand; f, fine sand; vf, very fine sand; s, silt; y, clay

TGS_90% (coarse tail)

B, boulder (>256 mm); cl, cobble, large (128-256 mm); cs, cobble small (64-128 mm);
pebble, very large (32-64 mm); pebble, large (16-32 mm); pebble, medium (8-16 mm);
pebble, small (4 8 mm); granule (2-4 mm); vc, very coarse sand; ¢, coarse sand; m,
medium sand; f, fine sand; vf, very fine sand; s, silt; y, clay

TGS_%Cong>2cm

TGS_MTG Number (mm), maximum transported grain size (in mm measured along the c-axis)
TGS_%>2mm Number (%), volume % of grains greater than 2 mm in diameter
TGS_%M Number (mm), % of mud in interval
TGS_%F Number (mm), % of fines (silts and very fine grained sand) in interval
(

)l
Number (mm), % of conglomerate (as defined by >30% of clasts greater than 2 mm in
diameter in a beds >2 cm thick) in interval

W, wads [large, thick, subequidimensional (>15mmx>3mm)J; d, dollars [large,

Intraclast Aggregate thin (>15mmx<3mm)]; p, penny [small, thin (3-15mm x <3mm)]; g, grain [small,

type equidimensional (<3mm x <3mm)]; b, bank (layer of intraclasts, clast or matrix support); n,
none

mlt(r:akﬁlsss; aggregate Number (%), sum of cross-section thickness of all intraclasts measured individually

EUBJ/AGS Earth Sciences Report 2003-01 (December 2004) « 3




Parameter

Variables

Accessory Mineral
Colour

Bk, black; Bn, brown; BR, black-red; C, cream; Gn, green; Gy, grey; M, maroon (brick);
0O, orange; P, pink; Pu, purple; R, red (bright); W, white; Y, yellow; YG, yellow-grey; n, no
colour alteration

Accessory Mineral
Distribution

D, disseminated; |, laminated; n, none

Tectonic Fractures/m

Number of fractures per m

Primary Sedimentary G, granule and larger (>30% coarser material); P, pebbly sand (<30% coarse material,
Structures- structure interbedded); S, sand, medium to coarse; F, sand, fine and very fine; M, mud (silt and
Size Class clay)
t, crossbedded, trough; p, crossbedded, planar; xc, crossbedded, condensed; x,
. . crossbedded, high angle, not specific; I, crossbedded, low angle (lower case L); |,
Primary Sedimentary

Structures_ Bed Form

horizontal laminated intraformational conglomerate (clay pebbles); 1, horizontal laminated
1 layer thick granule or coarser (the #1); h, horizontally laminated, uniform; ?, indistinct
bedforms; m, massive appearance

Secondary Sedimentary
Structures

Pc, pedogenic carbonate, calcrete; pp, pedogenic, pisoliths; ps, pedogenic silcretes; sy,
syneresis cracks; m, sand-filled mudcracks; d, clastic dikes; I, load clasts; b, ball and
pillow; s, steepened and overturned single sedimentary structure; s2, steepened and
overturned multiple sedimentary units; c, convolute bedding; u, understeepened, quartz
dissolution?; sl, slump, sedimentary fault; r, scour; n, none

Hydrocarbon_type

P, pyrobitumen; t, tar; h, heavy oil; I, light oil; o, odour only; n, none

Hydrocarbon_
Distribution

B, buttons; f, along fractures; -, intergranular, saturated; n, none

Hydrocarbon %

Number

Tectonic structure_ type

Ft, fault, unspecified; fd, fault, dip-slip; fs, fault, strike-slip; fr, fracture, no movement; bx,
breccia, br, breccia, milled (fault conglomerate); bc, breccia, crackle; su, sandy gouge,
uncemented; sc, sandy gouge, cemented; b, bedding plane; n, not determined

Tectonic structure_
angle to core axis

Number (<°)

Tectonic structure_

A, apatite; c, calcite; d, dolomite; s, siderite; h, hematite (only if saturated); I, limonite;
m, marcasite; py, pyrite; pi, pitchblende; td, dravite; y, clay; g, gouge; sc, gouge, sandy

cement/fill cemented; su, gouge, sandy uncemented; qc, chalcedony; qd, quartz, drusy; qo, quartz,
overgrowths; o, other; n, none

Tectonic structure_

thickness Number (cm)
B, botryoidal; ps, pseudomorphing; ms, massive; mn, manto, stratabound; v, vuggy; pa,

Replacement type patchy; d, disseminated; I, lining of voids; fi, replace rock within fault zone; fo, replace fault
zone and wall rock
A, apatite; c, calcite; d, dolomite; s, siderite; h, hematite (only if saturated); I, limonite;

Replacement cement/fl m, marcas.lte; py, pyrite; pi, pitchblende; td_’ dravite; y, cIay;. g, gouge; sc, gou.ge, sandy
cemented; su, gouge, sandy uncemented; qc, chalcedony; qd, quartz, drusy; qo, quartz,
overgrowths; o, other; n, none

Replacement thickness | Number (mm)

Remarks

Pictures
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studies over detailed transects in areas of known mineralization (Figure 2; Collier and Yeo, 2001; Long,
2001; Bernier, 2002; Collier, 2002; Kupsch and Catuneanu, 2002); and clay alteration studies (e.g.,
Percival et al., 2002). Ramaekers et al. (2001) made the first attempt to apply sequence stratigraphy to
the Athabasca Group. This was later built upon in other publications (Collier, 2002; Yeo et al., 2002;
Ramaekers and Catuneanu, 2003; Ramaekers, 2004).

l Alta. | Sask.
50km

McClean
Lake

Lake Athabasca

ATHABASCA BAsIN

| O_ Shea Creek McArthur

Riverﬁ.

Key Lake

Maybelle
River |

Alta. | Sask.

O Maybellle River (Kupsch and Catuneanu, 2002)

. McArthur River (Bernier et al., 2001; Bernier, 2002)
O Shea Creek (Colliet et al., 2001; Collier, 2002)

. McClean Lake (Lang, 2001) . Key Lake (Collier and Yeo, 2001; Long, 2001)

Figure 2. Location of detailed stratigraphic and sedimentological studies carried out under the EXTECH IV uranium
project.

2 Overview of the Regional Geology

21 Basement Lithology

The crystalline basement underlying the Athabasca Basin consists of various lithotectonic assemblages
of western Laurentia. The westernmost portion of the basin is underlain by the north-trending Taltson

EUBJ/AGS Earth Sciences Report 2003-01 (December 2004) ¢ 5




Magmatic Zone (TMZ), which represents the southern segment of the Taltson-Thelon Orogen, the
1.98-1.89 Ga weld between the Archean Slave and Churchill provinces (e.g., McDonough et al., 2000;
McNicoll et al., 2000). Basement rock types include ca. 1.97 Ga granitoid and variously retrogressed
granulite-facies metamorphic rocks (Stern et al., 2003; Pana et al., in press). To the south and east,
basement rocks belonging to the Lloyd Domain have a very distinct aeromagnetic pattern. The Lloyd
Domain includes massive to foliated granite to granodiorite and granitoid gneiss, with subordinate
massive to weakly foliated granite and metabasite (Card, 2001). East, in Saskatchewan, the Lloyd Domain
extends to the Clearwater Domain. The eastern Athabasca Basin extends over portions of the Trans-
Hudson Orogen, which represents the 1.9—1.8 Ga weld of the Churchill Province to the Superior Province
(e.g., Card, 2001).

At the Athabasca Group-basement contact, there is a zone of extensive regolith alteration, ranging in
thickness from 5.5 to 47 m, in which hostrock textures are commonly preserved (Wilson, 1986). The
alteration pattern is delineated by an upper clay-rich bleached zone, followed by red (hematitic) and green
(chloritic) zones. Zone thickness is variable between drillholes, with polyphase alteration commonly
overprinting the zonation pattern.

2.2 Athabasca Group

The current model for the stratigraphy of the Athabasca Group was developed by Ramaekers (1978, 1979,
1980, 1981, 1990, 2004). He recognized eight lithostratigraphic formations within the Athabasca Basin,
which have been further subdivided into members, designated with a letter suffix Some of
these, in turn, have been further subdivided into submembers. The formations have been categorized into
two subgroups: the William River Subgroup, comprising mainly fluviatile sandstone; and the Points Lake
Subgroup, comprising mudstone, sandstone and dolomite of lacustrine and/or marine origin (Ramaekers,
1990). Type sections for these formations have been outlined by Ramaekers (1990).

2.2.1 Fair Point Formation

The Fair Point Formation (Ramaekers, 1979) forms the base of the William River Subgroup and is
restricted to the northwestern portion of the Athabasca Basin, mostly in Alberta. It typically rests
unconformably on high-grade crystalline rocks of the Taltson Magmatic Zone (Pana et al., in press.).
North of Lake Athabasca, it unconformably overlies greenschist-grade metasedimentary rocks of the
Martin Group (e.g., Ramaekers et al., 2001).

The clay-rich Fair Point Formation has been subdivided into three informal members: FPa, FPb and FPc
(e.g., Ramacekers, 2004). The lowermost ‘a’ member is characterized by pebbly sandstone containing
abundant red siltstone interbeds and subordinate conglomerate. The overlying ‘b’ member is characterized
by massive to bedded conglomerate and pebble-bearing coarse-grained sandstone with clasts up to 50 mm
in diameter. The uppermost ‘c’ member comprises pebbly sandstone that is deficient in conglomerate.
Pebbles are typically well-rounded quartz clasts with minor, more angular clasts of mafic and felsic
basement rocks (Wilson, 1985; Ramacekers, 1990). The Fair Point Formation reaches a maximum
thickness of 310 m in the northern Alberta portion of the Athabasca Basin. It has also been identified in
Saskatchewan, within and surrounding the Carswell Structure (Pacquet and McNamara, 1985; Yeo et al.,
2001a).
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Table 2. Stratigraphic summary of the Athabasca Group, northern Saskatchewan and northeastern Alberta (modified
from Ramaekers et al., 2001)

Sub-group | Formation | Member Lithology
Carswell CF  |Dolostone; stromatolites, ooids, and synsedimentary breccia common

Points Lake Very fine grained sandstone, siltstone; black, red, and green mudstone; load casts,
Douglas DF

mud and syneresis cracks common

OFb  |Fine-grained sandstone; MTG <2 mm; clay intraclasts

OFa |Fine-grained sandstone with granules and pebbles <8 mm; clay intraclasts

LLc |Fine-grained to coarse pebbly sandstone; minor silt and mudstone; MTG 8-16 mm

Fine-grained to coarse pebbly sandstone; minor silt and mudstone; MTG >16 mm;
horizontal and low-angle crossbedding

LLa |Fine-grained to coarse pebbly sandstone; minor silt and mudstone; MTG 2-16 mm

Otherside

Locker Lake LLb

UNCONFORMITY
WPe Very well sorted, clay-rich, fine- to medium-grained sandstone; minor siltstone and
mudstone
WPb3 Very fine to medium-grained sandstone, mudstone thicker than 20 cm, tuffaceous

relicts; small intraclasts in thin beds

Wolverine WPb2 Very well sorted, clay-rich, fine- to medium-grained sandstone, minor siltstone, and
Point mudstone

Very fine to medium-grained sandstone, mudstone thicker than 20 cm, tuffaceous
relicts; small intraclasts in thin beds

WPa2 |Very fine to coarse-grained sandstone

WPa1 |Very fine to coarse-grained sandstone, minor thin siltstone and mudstone
Lazenby Lake| LzL |Basal thin conglomerate, pebbly and coarse- to fine-grained sandstone
William River MFd  |Fine- to medium-grained sandstone; clay intraclasts >2% of rock

Fine- to coarse-grained sandstone and pebbly sandstone; intraclasts >2% (only in
northern portions of the basin)

MFc  [Medium- to coarse-grained and pebbly sandstone; clay intraclasts <2% of rock

Medium- to coarse-grained and pebbly sandstone with minor siltstone and
mudstone; intraclasts <2% (only in northern portions of the basin)

MFb  [Pebbly to coarse-grained sandstone, pebbly sandstone, conglomerate
MFa2 |Medium- to coarse-grained sandstone, pebbly sandstone, conglomerate
Fine- to coarse-grained sandstone with disseminated pebbles, mudstone; horizontal

WPb1

MFd’

Manitou Falls| MFc’

MFa and low-angle crossbedding common
UNCONFORMITY
FPG Pebbly sandstone, sandstone; MTG <50 mm; horizontal and low-angle

crossbedding common

FPb2 Pebbly sandstone, sandstone, thin conglomerate; MTG >50 mm; horizontal and low-
Fair Point angle crossbedding common

FPb1 |Conglomerate and sandstone; horizontal and low-angle crossbedding common

Conglomerate, pebbly sandstone, sandstone, siltstone; horizontal and low-angle
crossbedding common

Basal lag Disseminated or bedded pebbles to boulders in sandstone

FPa

Abbreviation: MTG, maximum transported grain size
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2.2.2 Manitou Falls Formation

The Manitou Falls Formation extends throughout the entire Athabasca Basin. It directly overlies
crystalline basement throughout the majority of the basin, and unconformably overlies the Fair Point
Formation in the northwest part of the basin. There is a sharp change in lithological characteristics,

such as matrix clay, sedimentary structure and mean grain size, across the Fair Point—-Manitou Falls
unconformity (Kupsch and Catuneanu, 2002). The Manitou Falls Formation is informally subdivided into
four members: MFa, MFb, MFc and MFd (e.g., Ramaekers, 2004). These members are widely recognized
in the eastern portion of the Athabasca Basin (e.g., Yeo et al., 2000). The dominant member in the western
part of the basin is the ‘c’ member. It is defined as clean sandstone that lacks the conglomerate interbeds
of the underlying ‘b’ member, as well as the abundant clay intraclasts of the overlying ‘d’ member
(Ramaekers, 1990). The lowermost Manitou Falls ‘a’ member is poorly defined at present. It has been
recognized as a red mudstone—bearing unit at the base of the Athabasca Group in the southern part of the
Alberta portion of the basin (Ramaekers, 2004). In Alberta, the Manitou Falls Formation is thickest in the
southern portion of the basin, as it reaches a maximum of 300 m in drillhole ERC-04 on the Saskatchewan
side of the boundary (see Yeo et al., 2001a).

2.2.3 Lazenby Lake Formation

The Lazenby Lake Formation is exposed throughout the western and central portions of the Athabasca
Basin (Ramacekers, 1990). The base is marked by a disconformity, across which there is a contrast in
lithology with the underlying Manitou Falls Formation (Yeo et al., 2001a). The Lazenby Lake Formation
is characterized as a pebbly medium-grained sandstone with common overturned bedding (Yeo et al.,
2001a; Kupsch and Catuneanu, 2002). It reaches a maximum thickness of 200 m in Alberta (Ramackers,
2004).

2.2.4 Wolverine Point Formation

The Wolverine Point Formation is widespread throughout the central portion of the Athabasca Basin. It
comprises relatively mudstone-rich sandstone and mudstone (Ramacekers, 1990) and conformably overlies
the Lazenby Lake Formation, the stratigraphic boundary being placed where mudstone starts to become
abundant (Ramacekers, 2004). In places, the two formations are probably coeval (Ramaekers et al., 2001).

The Wolverine Point Formation has been divided into three informal members: WPa, WPb and WPc¢
(Ramacekers, 2004). The ‘a’ member comprises relatively finer grained sandstone with regular siltstone
interbeds that range in thickness from 5 to 20 cm (Ramaekers, 1990). The ‘b’ member is relatively
more clay rich and contains thicker and more abundant mudstone interbeds. These mudstone interbeds
dominate the succession towards the top, where they contain reworked tuffaceous material (Ramaekers,
1990). The ‘c’ member comprises a thin succession of coarser clay-rich sandstone found at the top of
the formation (Ramaekers, 2004). In Alberta, the Wolverine Point Formation reaches a thickness of
approximately 500 m south of Lake Athabasca (Ramaekers, 2004).

2.2.5 Locker Lake Formation

The Locker Lake Formation forms the uppermost stratigraphic unit throughout much of the south-central
Athabasca Basin (Yeo et al., 2001a). It is characterized by pebbly, medium- to coarse-grained sandstone
that contains subordinate thin conglomerate interbeds (Ramaekers, 1990; Ramaekers et al., 2001; Yeo et
al., 2001a). The Locker Lake Formation disconformably overlies the Wolverine Point Formation, the base
of which is often marked by an influx of unmetamorphosed sandstone intraclasts over 8mm in diameter
(Ramackers, 1990).
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The Locker Lake Formation has been subdivided into three informal members based on maximum
grain-size characteristics: LLa, LLb and LLc. The ‘a’ and ‘c’ members typically contain clasts <6 mm,
whereas the interstitial ‘b’ member contains clasts >16 mm. (Ramaekers, 2004). In Alberta, the Locker
Lake Formation reaches a maximum thickness of 200 m where it subcrops south of Lake Athabasca
(Ramackers, 2004).

2.2.6 Otherside Formation

The Otherside Formation is the uppermost formation of the William River Subgroup. It subcrops
throughout much of the central Athabasca Basin and is generally distinguished from the conformably
underlying Locker Lake Formation by its lack of pebbles >8 mm (Ramaekers, 1990). The Otherside
Formation consists of two informal members (Ramaekers, 2004): OFa and OFb. The ‘a’ member
comprises fine- to coarse-grained sandstone containing isolated granules and small pebbles. The ‘b’
member is characterized as granule-free, fine- to coarse-grained sandstone with common siltstone
interbeds. The Otherside Formation is less than 50 m thick in Alberta where it subcrops south of Lake
Athabasca (Ramaekers, 2004).

2.2.7 Points Lake Subgroup

The Points Lake Subgroup overlies the fluvial-dominated formations of the William River Subgroup

but is only preserved within the 356 Ma (Bell, 1985) Carswell meteorite structure, located in the west-
central part of the basin, approximately 25 km east of the Saskatchewan border. Its basal contact is poorly
exposed due to the impact (Ramaekers, 1990). The Points Lake Subgroup comprises two formations: the
Douglas and the Carswell. The Douglas Formation is dominated by thick mudstone and siltstone with
fine sandstone interbeds, and is estimated to be 200 m thick (Ramaekers, 1990). The Carswell Formation
is dominated by algal-laminated and stromatolitic dolomites, and is estimated to be 400—500 m thick
(Hendry and Wheatley, 1985).

2.3 Structural Features of the Western Athabasca Basin

There are two dominant orientations to faults in the western Athabasca Basin (see all faults
appearing to be related to pre—Athabasca Basin shear zones. The first set of faults, including the Beatty
River, Robillard, Grease River, Black Bay and Charlot faults, trends in a roughly east-northeast direction.
The second set, which includes the Richardson, Maybelle River and Net Lake faults, trends roughly
north-northwest; these are interpreted as splays off the Charles Lake Shear Zone (Ramackers, 2004).

The structural pattern of the basin appears to be largely related to indentation tectonics of the Slave-
Churchill collision, the Churchill-Superior collision and other associated orogenic events leading to the
development of Laurentia (Ross, 2002). Only the western and northwestern margins of the Athabasca
Basin appear to be bounded by major faults (Ramaekers, 2004). It is unclear what tectonic processes
initiated and, more importantly, absorbed subsidence following fault development.

An early depositional model suggested that the Athabasca Group was deposited in three northeasterly-
trending, subparallel sub-basins separated by regional highs associated with Hudsonian-age faults
(Ramaekers, 1990). The boundaries of these sub-basins have subsequently changed and new smaller
sub-basins, or troughs, have been identified. In Alberta, structural features have largely been discussed

in terms of such basement topographic lows and related highs (Ramaekers, 2004). These lows and highs
appear to be related to fault movements that were syndepositional and postdepositional to the Athabasca
Group (note that, in basement topographic lows are shaded). Two major basement lows in the
Alberta portion of the Athabasca Basin are the Jackfish Sub-Basin and the Beatty Trough. These are
separated by the Bartlett High (Ramaekers, 2004), over which the Maybelle River and Net Lake areas lie.
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Figure 3. Faults and other structures of the Athabasca Basin (revised from Ramaekers, 2004). Study area is outlined in black.
Basement lows are shaded. Key structural trends: BF, Bustard Fault; BBF, Black Bay Fault; BLKSZ, Black Lake Shear Zone;
BLSZ, Bayonete Lake Shear Zone; CBSZ, Cable Bay Shear Zone; CF, Charlot Fault; CLSZ, Charles Lake Shear Zone; FF, Fidler
Fault; FIF, Fletcher Fault; HF, Harrison Fault; LLSZ, Leland Lake Shear Zone; MF, Maybelle River Fault; NFSZ, Needle Falls
Shear Zone; PLSZ, Parker Lake Shear Zone; RF, Richardson Fault; RLSZ, Reilly Lake Shear Zone; SLF, St. Louis Fault; TFS,
Tabbernor Fault Systems; VRSZ, Virgin River Shear Zone; YF, Yaworski Fault; YHF, Yastsore Hill Fault. Note that the Maybelle
River Fault is a splay of the Bustard Fault and the Net Lake Fault is the southern extension of the Fletcher Fault.

The Jackfish Sub-Basin is confined to the northwestern portion of the Athabasca Basin and defines

the basin margin. The western and northwestern margins of the sub-basin appear to be bounded by the
Charlot Fault and splays off the Charles Lake Shear Zone (Ramaekers, 2004), and it extends to the
southeast toward the North Robillard Fault Zone. The Jackfish Sub-Basin was the major site of deposition
for the Fair Point Formation; although the depositional basin for the Fair Point originally extended

over the Bartlett High, since the Fair Point Formation can be traced to the South Robillard Fault zone.
The current expression of the Jackfish Sub-Basin is therefore somewhat related to fault movement that
postdates the Fair Point Formation.

The Beatty Trough is confined to the area between the South Robillard Fault and the Beatty River Fault
(Ramaekers, 2004). This area contains the thickest succession of the Manitou Falls Formation in the
Alberta portion of the Athabasca Basin (Ramaekers, 2004). South of the Beatty River Fault is a basement
topographic high that extends to the southwestern margin of the basin. This is referred to as the Patterson
High (Ramaekers, 2004).

3 Stratigraphy of the Southwest Athabasca Basin in Northeastern Alberta

Twenty-six diamond-drill holes were chosen along the Net Lake and Maybelle River faults. The basement
is relatively shallow in the study area, making it of particular economic interest Drillholes
ranged from several tens to hundreds of metres in depth, the deepest being the most basinward, containing
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nearly 300 m of Athabasca Group (drillhole MR-84). In general, the Athabasca Group thins to zero edge
along the southern margin of the study area and is thinner in the Net Lake area than in the Maybelle River
area. Broader scale observations were recorded for the underlying basement and overlying Paleozoic
rocks. Cross-sections and isopach plots for all of the stratigraphic units of this study are available in
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Figure 4. Depth to basement in the study area. Contour interval is 20 metres. Net Lake (left) and Maybelle River (right) trends
are superimposed as orange lines. The southern area has abundant drillcore information, so contouring is more confident, as
indicated by the solid contours. There is little information north of drillhole MR-27, so contouring is less confident, as indicated by
the dashed contours.

The use of Ramaekers’ (2004) lithostratigraphic scheme may not be the best means of subdividing the
strata in the study area. To facilitate identification of units and members within the Athabasca Group in
Alberta, the units have been subdivided into lithofacies associations or sets of lithofacies associations.
Subdividing the strata in terms of facies gives a more realistic genetic meaning to these units, as opposed
to division by arbitrary lithological picks. summarizes the basic facies (after Miall, 1996)
identified within the revised lithostratigraphic units outlined in the following section.
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Table 3. Facies (after Miall, 1996) identified in the study area and their relation to the revised lithostratigraphic units
along the Net Lake and Maybelle River trends.

Facies Names Grain size | Sorting z?:kness Bed contacts |Interpretation Units'
Gmm  |Matrix-supported
@ | (Pm) |massive gravel |Granules Noncoesive
2 Gme |Clast-supported land Pootvto |V 10 crud sediment -
2 massive gravel |pebblesinal oo © |thickly bedded [T19: .
a — . extremely nonerosive to  |gravity flows
= | ~: /oy |INdistinctly medium- to . .
= | Gi(Pi) bedded aravel  |coarse- poorly slightly erosive
3 g ined sorted and transitional
s Crudely stratified [9rained Thinly to Crude FPL EPU
S |Gh (Ph)|gravel to pebbly [Sand matrix medium longitudinal bar (rére)
£ sandstone bedded forms
< Granules .
£
o Granule to pebble|to pebbles Poorly to Th|gkly
= : moderately (laminated to .
5 G1 |layer, one granule|(fine to ool verv thinl Sharp Lag deposits FP, LzL
© thick coarse poorly fy iy
) sorted bedded
matrix)
. Medium-  [Moderately |Very thinly to
Sr st;Fr)IF()jlset?)ne grained to well thinly bedded Ripples MF(I:_’Z'\SFd’
sand sorted, (<5 cm thick)
normal Sharp, erosive,
Crossbedded graded minor scour
Sxe sandstone where surfaces (change Dune forms FPI FPu,
apparent in grain size)

. Moderately |_ Upper flow FPI, FPu,
§ Sm Massive to well Thm!y o regime MFc, MFd,
2 sandstone ) medium
2 Medium- to |sorted bedded macroforms LzL
;n% coarse- Crudely defined

_ |grained Moderately to sharp, erosive,
S It_)g\glsangle €108~ Isandstone ~ [to well minor scour Dune forms FPll\}”E:u,
sorted surfaces (change
in grain size)
Thickly Upper flow
sh |Horizontal beds mcaj:ﬁately laminated Sharp to crudely |regime simple | FPI, MFc,
sorted to medium  |defined bar and MFd, LzL
bedded macroforms
Dependent
Massive siltstone on Thinly to
Fm and/or mudstone |Silt and abundance |medium Sharp Lacustrine FPI
Il and VeTY |of sand and |bedded
" fine sand, granules
£ Horizontal minor sand,
[T
l | , ) .
interbedded granuies Moderately [Thickly Lacgstrme,
and pebbles waning flood
Fh |with sandstone, to poorly  |laminated to Sharp deposit to edd FPI, MFc
granule to pebbly sorted thinly bedded pos y
deposit
conglomerate

'see for explanation of abbreviations
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Forty thin sections were chosen from selected drillcores for petrographic analysis. These were used to
analyze mineralogy, sorting, rounding, fabric and clay content, which are difficult to describe in hand
specimen. Point counts were also done on many of the thin sections. Petrographic data and lithologs are

presented in and E] respectively.

31 Basement

The basement in the study area consists of a midcrustal, 1.963 Ga Wylie Lake suite (Figure 5;
McDonough and McNicoll, 1997). Wilson (1986) divided the suite into lithological units. The most
predominant unit is the Wylie Lake granitoid, a mesocratic, red to dark grey, medium-grained intrusive
rock. Crystals are generally equigranular with localized zones of pegmatite. The granitoid is moderately
foliated, with more intense foliation closer to shear zones, where mylonitic textures predominate. The
dominant mineralogy is quartz, plagioclase, biotite and possibly hornblende. Compositionally, the Wylie
Lake granitoid is granodiorite to tonalite (Wilson, 1986).

Athabasca Basin margin -~ #

Wylie Lake granitoid

o Fishing Creek granitoid

109 Grey Foliated granitoid

Alkali feldspar-rich
granitoid

108
Arch Lake granitoid

107 Granite gneiss

Undifferentiated
granitoid

106
Mylenitic rocks
105 Location of diamond-
drill hale

Location of sampled
outcrop from Godfrey
(1970)

Fault

104
103

" 7" T T T

m
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et
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Figure 5. Basement geology of the western Athabasca Basin (revised from Wilson, 1986). Study area is outlined in black. Note
that the major fault zones at Net Lake and Maybelle River parallel the mylonite zones (shear zones) of the basement.
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The other prominent basement unit observed in the study area is the grey foliated granitoid of Wilson
(1986). This granitoid is distinguished by its light to medium grey colour (e.g., drillhole MR-07).
Texturally, it ranges from massive to well foliated. It is typically medium grained with localized
pegmatite. The unit is dominated by quartz, plagioclase and alkali feldspar, with minor biotite and
possibly clinopyroxene. Accessory minerals include minor almandine garnet and pyrite. The alkali
feldspar—rich granitoid suite of Wilson (1986) was not positively identified in this study.

Mylonite zones generally coincide with later regional faults. In these zones, graphite and pyrite are
typically common (e.g., drillholes MR-12, -64 and -81) and may be associated with fault-movement
indicators. Intensely fractured, granitic augen are common within fault zones. Chlorite alteration is
predominant in the mylonite zones. Ultra- to protomylonite textures are developed distal to the fault
zones. Fault movements form rare dip-slip indicators (e.g., drillhole MR-81). Fractures infilled with
calcite are commonly associated with the mylonite.

In this study, the thickness of the alteration zone beneath the Athabasca Group unconformity ranges

from zero (e.g., drillhole MR-78), marked by fresh basement, to more than 60 m of intense digenesis (in
drillholes MR-16 and -17). Identification of individual red-green zones is not apparent in the majority of
holes due to subsequent polyphase alteration. As a result, it is not possible to correlate individual horizons
along the Maybelle and Net Lake trends. Nevertheless, it is interesting that there is good zonation within
the paleoweathered horizon surrounding the uraniferous zone at Maybelle River.

3.2 Stratigraphic Examination of the Fair Point Formation

The Fair Point Formation is widespread throughout the study area but is absent toward the south, along
the southern margin of the Bartlett High (e.g., drillholes MR-07, -16, -17, -64, -76 and -78). In the study
area, it thickens to the north from 0 to approximately 80 m (e.g., drillholes MR-70 and -84). The Fair
Point Formation is a fining-upward sequence overprinted by five smaller-scale, fining-upward cycles
traced across the study area. Cycles are typically 5—10 m thick, except for the uppermost cycle, which is
10-50 m thick. Cyclical sedimentation in the Fair Point Formation may be a result of local, intrabasinal
change in depositional subenvironment (Jo et al., 1997). The overall fining-upward Fair Point succession
is probably associated with allogenic processes, such as climate and tectonic regime (Ridgeway and
DeCelles, 1993).

The Fair Point Formation is best distinguished by pebbles and by the abundant interstitial clay that
constitute up to 12% by volume. The dominant pebble lithology is white quartz, although minor
sandstone, siltstone and quartzofeldspathic basement clasts are also common. Subordinate regolith clasts
are locally found at the base.

In the Fair Point Formation subdivision of Ramaekers (2003) is compared to the revised
classification of this study. Due to lack of regional continuity in the study area, Ramaekers’ (2004) Fair
Point ‘a’ member has been grouped with the overlying Fair Point ‘b’ member to form a new lithological
unit, referred to as the lower Fair Point Formation (FP1). Alternatively, it comprises two lithofacies
associations similar to Ramaekers’ members LA-1 and LA-2, respectively. The upper Fair Point
Formation (FPu) is considered broadly equivalent to Ramaekers’ (2004) Fair Point ‘c’ member. It consists
of one lithofacies association, LA-3.

3.2.1 Lithofacies Association 1: Siltstone

Lithofacies association 1 is found locally above the basement unconformity up to 15 m thick. It is
generally equivalent to Ramaekers’ (2004) Fair Point ‘a’ member, best developed in drillhole
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Figure 6. Quantitative metre-by-metre litholog for drillhole MR-36 (see for descriptions of parameters). Ramaekers’
(2003) regional classification is compared to the revised subdivision of this study. In Ramaekers’ scheme, the break between
FPa and FPb is unclear because siltstone typical of FPa is interbedded with conglomerate typical of FPb. The upper boundary
with FPc is arbitrarily placed at the last 50 mm pebble, irrespective of primary sedimentary structure. The classification of this
study is respective of sedimentary structure, dividing the Fair Point into two members. The lower Fair Point Formation is defined
as siltstone and conglomerate-bearing sandstone. The upper Fair Point Formation is defined as predominantly massive pebbly
sandstone with minor thin conglomerate interbeds at the base.

MR-36 (also in drillholes MR-06, -18 and -37). It comprises red, massive to planar-laminated siltstone
lithofacies Fm and Fh of Miall, 1996), interbedded with poorly sorted, massive and planar-
bedded, medium- to coarse-grained sandstone. Massive siltstone interbeds are more common toward the
basal unconformity and occasionally display signs of soft-sediment deformation. Up-section siltstone
units become interbedded with and are gradually replaced by thin- to- medium beds of clast-supported
conglomerate and pebble-bearing sandstone. Localized matrix-supported conglomerate may be sand or
silt supported.

This lithofacies is interpreted as having been deposited in a shallow-lake environment. Quiet-water
sedimentation is supported by the predominance of siltstone and massive to flat-bedded sandstone. Lack
of syndepositional pyrite or siderite supports deposition in an oxidizing environment (Platt and Wright,
1991). Lack of abundant carbonate and evaporate, and the presence of syneresis cracks indicate that the
lake was not extremely alkaline (Allan and Warren, 1993; Sanz-Rubio et al., 1999). The interbedding and
gradual replacement of siltstone with conglomerate indicates periodic, high-energy fluvial discharge into
the system.
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Figure 7. Photos of the lower Fair Point Formation: a) red, massive and planar-laminated siltstone interbedded with pebble
conglomerate, typical of the lowermost siltstone facies (LA-1), from a depth of 254 m in drillhole FC-027, located approximately
20 km northwest of the study area (photo courtesy of Brent Collier); width of the photo represents 1 m; b) matrix- and clast-
supported conglomerate typical of the conglomeratic lithofacies (LA-2), from a depth of 111.85 m in drillhole MR-04; clasts
include altered clayey pebbles (C), resedimented Fair Point sandstone (F), regolith (R), granitoid (G) and quartz (Q).
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3.2.2 Lithofacies Association 2: Pebble Conglomerate and Pebbly Sandstone

Lithofacies association 2 is commonly interbedded with the underlying red siltstone—rich lithofacies
(LA-1). It is broadly equivalent to Ramaekers’ Fair Point ‘b’ member and is best developed toward the
northern part of the Maybelle River trend, where it reaches a maximum of 45 m thickness in drillhole
MR-84. It is absent in the southern sections of the Maybelle River and Net lake areas (drillholes MR-
14, 27, 73 and 81). The lithofacies is characterized by bleached to red-stained, poorly sorted, granule to
pebble conglomerate (facies Gmm, Gme, Gh and Gi of Miall, 1996), and pebbly sandstone (facies Pm,
Pi and Ph). Thin to thick massive and crudely cross-bedded interbeds of matrix- and clast- supported
conglomerate facies Gmm and Gmce) and common. The clasts are dominated by white quartz
with subordinate quartzofeldspathic gneiss and granitoid pebbles present. These are generally subangular
to subrounded and locally exceed 80 mm in diameter. Minor medium- to coarse-grained massive
sandstone is interbedded throughout this facies and increases in abundance upsection. Interstitial clay is
rich within the lithofacies, constituting 12% by volume.

This lithofacies is interpreted as having been deposited by noncohesive sediment gravity flows. Sediment
gravity flows are defined as a mixture of sedimentary particles, entrained water and air that moves rapidly
downslope under the force of gravity (Lowe, 1982; Blair and McPherson, 1994; Grant, 1997; Blair, 1999).
The abundant floating pebble clasts are typical of this cohesionless character. The general paucity of silt
and mud within the matrix indicates that the conglomeratic slurry did not behave as a cohesive, viscous,
Bingham fluid. This lithofacies does not appear to have been deposited in a bedload-dominated fluvial
system, as it lacks the consistent grading and clast imbrication typical of traction-style deposits (Bridge,
1993). Influx of pebbly sandstone interbeds may reflect changes in the hydraulic regime, related to flow
velocity.

3.2.3 Lithofacies Association 3: Massive Sandstone

Lithofacies association 3 is gradational with the underlying pebbly and conglomeratic lithofacies (LA-2)
where the latter is present. It broadly corresponds to Ramaekers’ (2004) Fair Point ‘c’ member. It reaches
a maximum thickness of 80 m in the Maybelle River area (e.g., drillhole MR-84; also found in drillholes
MR-04, -09, -10, -11, -12, -14, -15, -18, -27, -36, -37, -61, -71, -73, -81 and -84). Where the lower

Fair Point Formation is absent, this fining-upward lithofacies directly overlies basement (e.g., drillhole
MR-27) and is considered to be coeval to the underlying lithofacies. It is characterized by moderately
sorted, massive to crudely crossbedded, medium- to very coarse grained sandstone and

is interbedded with minor, thin, pebble conglomerate and pebbly sandstone (predominantly facies Sm
and Sxc). Conglomerate interbeds are typically concentrated at the base of the succession. The clast
composition is similar to that of LA-2. Minor red-stained siltstone beds, typically less than 5 cm thick,
occur periodically throughout the lithofacies.

Sandstone of the upper Fair Point Formation was deposited as hyperconcentrated flows, based on the lack
of definable bedding, paucity of fines and consistent sand texture (Lowe, 1982; Costa, 1988; Blair and
McPherson, 1994). Such systems contain sediment-rich, fluidized flows with limited cohesion (Costa,
1988). Grains appear to have been transported by grain-to-grain interaction, effectively raising system
pore pressure and resulting in slurry movement. Fluvial morphological elements associated with this
type of bedding regime are rarely preserved but may include crudely defined, low-angle, longitudinal
bar forms and shallow, wide channels. Bar-form morphology is inferred to be relatively similar to that of
the underlying conglomeratic unit. The lack of definable bedding may reflect postdepositional reworking
in a relatively high-energy fluvial environment. Local conglomerate and pebbly sandstone lenses are
interpreted as lag deposits. The depositional plane was probably at a relatively low gradient with respect
to the underlying conglomeratic lithofacies.
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Figure 8. Photos of the upper Fair Point Formation: a) pebble-bearing, clay-rich, massive sandstone from a depth of 153.1 min
drillhole MR-81; note the subrounded clay-altered regolith clast; b) photomicrograph in plane-polarized light; note the abundant
hematite clay and angular quartz clasts; width of photo represents approximately 5 mm.
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Figure 9. Photos of the Manitou Falls Formation: a) clay-poor, rippled and crossbedded, medium- to coarse-grained sandstone
located directly above the basement unconformity (MFc), from a depth of 69.9 m in drillhole MR-76; b) photomicrograph, in
plane-polarized light, of typical Manitou Falls Formation, from a depth of 93.5 m in drillhole MR-07; width of photo represents
approximately 5 mm.
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percentage of matrix clay is significantly less than that of the Fair Point Formation. White, sliver-like clay
clasts are typically rare. Hematite staining is commonly associated with larger grain sizes.

The bedding style supports deposition via traction currents with hydraulic conditions dominated by
bedload transport. Extrapolated through grain size and sedimentary structure, the dominant bedforms
were dunes. These were probably deposited within wide, shallow channels. Flow velocity in such
channels would have been approximately 1 m/s (e.g., Ashley, 1990). The abundance of granules and small
pebbles within this lithofacies implies that the fluvial velocity prevented the formation of ripples (Ashley,
1990; Miall, 1996). Massive bed forms may be related to upper flow regime conditions associated with
sheet floods.

3.3.2 Lithofacies Association 5: Intraclast-Bearing, Rippled, Medium-Grained Sandstone

This clay-poor lithofacies is the equivalent of Ramaekers’ (1990) Manitou Falls ‘d’ member. It locally
overlies the coarse-grained lithofacies (LA-4) or, where LA-4 is absent, directly overlies the Fair Point
Formation. It is characterized by well sorted, ripple- and crossbedded, medium-grained sandstone

(facies Sr with subordinate Sh, Sm and Sxc of Miall, 1996). Bedding is dominated by sets of thin ripple
crosslaminae less than 5 cm thick. Massive beds are local and generally decrease in abundance upsection.
Minor siltstone lenses are commonly less than 5 cm thick. Bed sets are normal graded. The maximum
grain size rarely exceeds 2 mm. Small, white, sliver-like clay intraclasts have a patchy distribution
throughout the facies. These generally increase in abundance upsection but rarely exceed 1.5% by
volume. No regional variation in intraclasts abundance is apparent.

The dominance of ripple lamination and fine grain size of this lithofacies reflects low-velocity fluvial
discharge on a low-gradient braid plain. Flow velocities in such channels would have been approximately
1 m/s (Miall, 1996). The resultant bed and channel forms probably consisted of low-angle ripple and
dune forms. Based on the thickness of the bed sets, channel depth was probably less than 1 m. Massive
beds may reflect upper flow regime conditions (e.g., Bridge, 1993) or, alternatively, insufficient sorting
by burst-sweep processes. The presence of flow end members (ripples and massive bedding) supports the
idea that flow velocity had a wide range (Ashley, 1990).

The prevalent clay intraclasts appear to be locally derived. The source of these intraclasts was probably
semiconsolidated fines, deposited in quiet-water eddies off the main channel(s) or in standing pools
during low-stage channel abandonment (Miall, 1996). Intraclast rip-up and subsequent deposition
indicates frequent channel migration.

3.3.3 Petrography of the Manitou Falls Formation

The mineralogy of the Manitou Falls Formation is 99% quartz Grains are typically
subrounded and moderately sorted, and display undulatory extinction. Trace patches of epitaxial clay
were probably derived from feldspar minerals. Siltstone and fine-grained sandstone intraclasts are rare,
as are grains of zircon and tourmaline. Grain-to-grain contacts are commonly concavo-convex and are
typically sutured. The samples generally exhibit low porosity with minor interstitial, amoeba-shaped
voids (<0.5 mm in diameter).

Interstitial clay, probably consisting of kaolinite and illite, may represent diagenetically altered mud.
Hematite is found throughout the formation, usually as rims on quartz grains. Silica is the dominant
cement, mostly found as overgrowths on quartz grains. Muscovite is present as thin disseminated laths in
solution seams or microstylolites. Calcite cement was observed in trace quantities.
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3.4 Stratigraphic Examination of the Lazenby Lake Formation

The Lazenby Lake Formation is distinguished by its pebble content and abundant overturned bedding. It
subcrops towards the northern limit of the Maybelle River Fault in the study area (e.g., drillholes MR-27,
-36,-37, -70, -71, -73 and -84), where it reaches approximately 30 m in thickness. It is completely eroded
in the Net Lake area. The unconformity with the underlying Manitou Falls Formation is a marked by an
increase in massive fines, a change in grain size and a decrease in abundance of clay intraclasts. Only one
lithofacies association, LA-6, was identified in the study area.

3.4.1 Lithofacies Association 6: Pebble-and Granule-Bearing, Rippled and Massive Sandstone

Lithofacies association 6 consists of clay-poor, granule- to pebble-bearing, fine- to medium-grained
sandstone (facies Sr, Sm and G1 of Miall, 1996). It is typically rippled and crossbedded, with minor fine-
to medium-grained interbeds of massive sandstone. Overturned and convolute bedding are pervasive
Minor quartz granules and small pebbles are present throughout the formation, constituting
1-2% by volume. Pebbles are locally as large as 27 mm (e.g., drillhole MR-73). They are either found as
floating clasts or are concentrated as one-clast-thick layers on bedding planes (G1 layers). The maximum
grain size in the Lazenby Lake Formation exhibits an overall fining-upward trend. Clay content is similar
to that of the Manitou Falls Formation at approximately 2 % by volume. Ubiquitous hematite staining
frequently overprints and cross-cuts sedimentary structures.

The predominance of ripple laminae supports deposition from traction current—dominated, low-velocity,
braided fluvial systems. The massive beds may represent high-flow conditions. Alternatively, they may
indicate low-flow or stagnant-flow conditions, where a decrease in velocity and associated shear strength
resulted in the massive deposition of sand (e.g., Martin and Turner, 1998). Convolute bedding has been
attributed to frictional drag over water-saturated sediment during high-energy flows (Collier, 2002). The
minor but consistent presence of quartz granules and pebbles has been interpreted as lag deposits within
the channel or on the upstream face of bar forms.

3.4.2 Petrography of the Lazenby Lake Formation

Microscopically, the Lazenby Lake Formation is very similar to the Manitou Falls Formation. It is
texturally massive and comprises 99% quartz grains. Grain-to-grain contacts are typically concavo-
convex and sutured. All grains exhibit undulose extinctions. Minor to trace amounts of optically
independent epitaxial clay probably represent diagenetically altered feldspars. No definitive lithic
fragments were observed.

The matrix consists of minor disseminated patches of kaolinite and illite clay. Hematite is found
throughout the Lazenby Lake Formation, both rimming framework grains and as interstitial, anhedral
masses Quartz overgrowths are found throughout the formation. Zircon and tourmaline are
found in trace quantities and muscovite is present as thin disseminated laths along solution seams and
microstylolites.

3.5 Paleozoic

In the southwestern corner of the study area, quartz arenites with calcareous cement and carbonate
rocks unconformably overlie the Athabasca Group. These were only encountered in drillcore FC-034,
where crinoid and brachiopod fossils were readily observed. A review of these strata was presented by
Ramackers (2004).
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Figure 10. Photos of the Lazenby Lake Formation: a) overturned bedding, from a depth of 109.6 m in drillhole MR-84; b)
photomicrograph, in plane polarized light, of extensively hematite stained (brown), moderately sorted sandstone from drillhole
MR-71; note the large, rounded quartzite granule on the right; width of photo represents approximately 5 mm.
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3.2.4 Petrography of the Fair Point Formation

Quartz predominates throughout this package There is no evidence of fresh feldspar,
although lithic fragments are common. All clasts are typically poorly sorted and subrounded. Grain-to-
grain contacts are usually concavo-convex and are commonly sutured. Fracturing of quartz grains occurs
locally. Lithic fragments consist of igneous, metamorphic and sedimentary varieties. The most common
types are clay-altered, massive to weakly foliated granite and quartzite clasts; altered to fresh gneissic
clasts; and siltstone clasts. Trace minerals clasts include small (<1 mm in diameter), subhedral to anhedral
zircon and tourmaline. Zircons have also been found as well-rounded inclusions in quartz. Tourmaline
grains typically exhibit frayed authigenic overgrowths or ‘suns’ (Wilson, 1985). Micaceous solution
seams and/or microstylolites are also apparent and are oriented subparallel to bedding. Subordinate
amounts of fine-grained carbonate were observed throughout the formation.

Approximately 12% clay is found interstitial to the sandstone matrix. This is probably epitaxial cement
rather than depositional mud; however, this is uncertain due to the intense diagenesis. If it is epitaxial
cement, then the original labile minerals were probably feldspar, suggesting that the sandstone was
originally subarenite or sublitharenite. Kaolinite and illite are the predominant clay minerals throughout
the Fair Point Formation. It is unclear whether the groundmass of structureless kaolinite represents
original clay, as suggested by Wilson (1985).

As with the clay minerals, distinguishing primary cement in the Fair Point Formation is problematic due
to multigenerational diagenetic alteration. Secondary silica cement forms as quartz overgrowths on sand
grains. Hematite is ubiquitous and may vary considerably in form and quantity. It is commonly found as
fine rims around detrital quartz grains beneath the secondary quartz overgrowths; alternatively, it may be
scattered throughout the matrix.

3.3 Stratigraphic Examination of the Manitou Falls Formation

The Manitou Falls Formation in the study area is characterized by clay-poor (< 2%), moderately

sorted, ripple- to crossbedded, medium-grained sandstone [Fiéure 9ai | Where the underlying Fair

Point Formation is absent (e.g., drillholes MR-07, -64, -76 and -78), the Manitou Falls directly overlies
basement. The stratigraphic thickness of the Manitou Falls Formation increases northward from a zero
edge, where it subcrops along the southeastern margin of the study area (e.g., drillholes MR-16 and -17),
to a thickness of 100—120 m in drillholes MR-70, -71 and —84, where it is completely preserved beneath
the Lazenby Lake Formation).

The majority of the Manitou Falls Formation in the western basin has previously been classified as the
Manitou Falls ‘c’ member (e.g., Ramaekers, 2004). This study reclassified this succession as lateral
equivalents of both Ramaekers’ (1990) clean sandstone member (MFc) and clay intraclast—rich member
(MFd). These are defined by the two lithofacies associations LA-3 and LA-4, respectively.

3.3.1 Lithofacies Association 4: Crossbedded, Medium- to Coarse-Grained Sandstone

Lithofacies association 4 corresponds to Ramaekers’ (1990) Manitou Falls ‘c’ member. It is locally
present throughout the study area (e.g., drillholes MR-10, -11, -15, -37, -61, -64, -70, -73, -76, -78, -

81 and -84) and is commonly less than 10 m thick. It is characterized as a moderately to poorly sorted,
medium- to coarse-grained sandstone containing granules and small pebbles (of facies Sr, Sxc, Sm and
G1 of Miall, 1996). Crossbedding is the dominant sedimentary structure. Subordinate massive sandstone
interbeds are locally up to 70 cm thick (drillhole MR-73). Minor, light orange, fine grained sandstone and
siltstone lenses are interspersed throughout this lithofacies and are generally less than 2 cm thick. The
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4 Diagenesis and Other Postdepositional Characteristics

Alteration features recorded on a detailed scale include silicification, friability and fractures. Tectonic and
mineral-replacement features were only recorded where apparent. Logs displaying this alteration data are
provided in Hydrocarbon staining is pervasive throughout the Athabasca Group in the study
area, derived from the nearby Athabasca Oil Sands of the McMurray Formation (Wilson et al., 2002).

Silicification is represented by drusy quartz along fractures or complete silicification of drillcore
Stratigraphically, the relatively clay-poor Manitou Falls and Lazenby Lake formations are
moderately silicified. On the other hand, the clay-rich Fair Point Formation is relatively weakly silicified.
Local zones of intense silicification in lower sections of the Manitou Falls Formation were observed

in holes along the Maybelle River trend, specifically proximal to the mineralized zone (e.g., drillholes
MR-27, -36 and -73). Otherwise, there is no recognizable variation in silicification within the study area.
Likewise, the overall succession is competent, with no regional variation in friability. Weak stratigraphic
variation in friability is only apparent when comparing the Manitou Falls—Lazenby Lake succession with
the Fair Point Formation, where the high clay content seems to make the drillcore more friable.

The most prominent tectonic features observed in core are oriented fractures and faults, and breccia.

Both low-angle reverse faults and high-angle normal faults were identified, but the majority of faults

lack movement indicators. Clay, pyrite and drusy quartz commonly infill faults and fractures. Infilling

by pyrite and euhedral quartz occur predominantly in the Manitou Falls and Lazenby Lake formations.
Infilling by clay is most prominent in the Fair Point Formation, where it is locally associated with breccia.
In some places, clay gouge can be on the order of several tens of centimetres thick No major
stratigraphic variation in fracture abundance is apparent in the study area. Stratigraphically, the Fair Point,
Manitou Falls and Lazenby Lake formations average 3, 4 and 2.8 fractures/m, respectively. Fracture
counts must be interpreted with caution, however, as some are related to recent breakage during core
extraction and related activities.

Based on examination of alteration characteristics, the lack of significant change is probably due to the
very localized nature of uranium deposits in the Athabasca Basin. These are limited in distribution by
their structural controls, typically being less than 1 km long and a few metres wide and deep. As well, the
corresponding alteration halo of known deposits is generally less than 2 km in diameter. Hence, the study
area of Kupsch and Catuneanu (2002) theoretically may encompass the entire alteration halo.

Postmineralization pyrobitumen (Wilson et al., 2002) is present in core throughout the study area, with
no apparent regional variation in distribution. Stratigraphically, the low-maturity hydrocarbons (Wilson
et al., 2002) are in the form of sticky tar and hard pyrobitumen. These occur in greater abundance within
the Manitou Falls and Lazenby Lake formations than in the Fair Point Formation. Hydrocarbons are also
present in the overlying Paleozoic calcarenite and, in places, within the basement. Hydrocarbon habit
ranges from fracture controlled to minor hydrocarbon buttons. Some zones are completely saturated, with
spots and pervasive staining generally limited to the Manitou Falls and Lazenby Lake formations. It is
postulated that hydrocarbon abundance and habit is related to: depth of strata, grain size, clay content,
tectonic structures and changes in lithology (such as the Fair Point-Manitou Falls unconformity).
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Figure 11. Photos of diagenetic features: a) drusy quartz along a fault, from a depth of 113 m in drillhole MR-09; b) clay
gouge in the Fair Point Formation, from a depth of 263.9 m in drillhole MR-71.
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5 Discussion
51 Depositional Model

5.1.1 Fair Point Formation

Initial deposition of the Athabasca Group occurred in small, shallow lakes in which the siltstone
lithofacies of the lower Fair Point Formation was deposited. It is postulated that these lakes were confined
to fault-controlled, linear paleovalleys. Lack of lithofacies continuity suggests that the surface area of the
lakes was areally limited to less than a few kilometres. The thickest deposits coincide with coalescing
fault splays (e.g., drillhole MR-36). Generation of accommodation space resulted in rapid infilling of

the lacustrine systems by prograding deposits of interbedded conglomerate and massive to crudely
crossbedded fluviatile sandstone.

The sedimentary style of the conglomerate interbeds reflects relatively infrequent and high-volume
hyperconcentrated flows on a moderate slope in an alluvial-plain setting. The absence of laterally
continuous, thick, coarsening-upward gravel sheets indicates that conglomerates were not deposited in
alluvial fans (Blair and McPherson, 1994). Also, the lack of traction-style deposits suggests that these
conglomerates were not deposited in a typical braided river system. Tangentially, the steepest slopes (i.e.,
the thickest conglomerate beds) correspond to areas where faults coalesced.

Overlying, conglomerate-rich sediments were deposited in transverse fluvial systems prograded out

of slightly elevated, fault-controlled depositional basins (less than 20-25 km long). The Net Lake and
Maybelle River faults probably influenced the depositional conduits. Prolonged erosion of the elevated
hinterlands led to active backstepping and subsequent basin enlargement, indicated by the overall fining-
upward profile of the Fair Point Formation. Deposition probably occurred as prograding sedimentary
tongues off regional topographic highs that were later subdued.

Cyclicity in the Fair Point Formation may be a result of local, intrabasinal change in depositional
subenvironment (Jo et al., 1997). The overall fining-upward Fair Point succession is probably associated
with allogenic processes, such as climate and tectonic regime (Ridgeway and DeCelles, 1993).

5.1.2 Manitou Falls Formation

A dramatic change in fluvial style occurred across the Fair Point-Manitou Falls unconformity. The
Manitou Falls Formation was deposited in a perennially low-gradient system, constructive, braided fluvial
system, with slopes substantially lower than those of the Fair Point Formation. The locally occurring,
coarser basal unit (MFc) may reflect possible infilling of eroded paleovalleys, which developed during

the depositional quiescence prior to deposition of the Manitou Falls. Complete erosion of the Manitou
Falls in the southern part of the study area (e.g., drillholes MR-16 and -17) is probably related to late or
post-Athabasca uplift along the Maybelle River and Net Lake faults. The catchment basin for the Manitou
Falls, as reflected by sedimentology and provenance, was many orders of magnitude larger then that of
the Fair Point Formation. This is supported by the lateral extensivity of the Manitou Falls Formation
throughout the Athabasca Basin.

5.1.3 Lazenby Lake Formation

The incomplete Lazenby Lake Formation was deposited in a fluvial environment similar to that of the
Manitou Falls Formation. Flow was probably perennial, characterized by low-velocity discharge with
frequent high-discharge events. The source of pebbles and granules in the Lazenby Lake Formation was
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distal. There is no evidence for bulk erosion of the underlying Manitou Falls Formation. Similar to the
Manitou Falls Formation, deposition of the Lazenby Lake probably occurred in a series of low-relief
fluvial tongues prograding off distal regional paleohighs.

5.2 Source Area

The large clast size, angularity and lithological diversity of the Fair Point Formation suggest a relatively
proximal source area. A peak of 1.9 Ga detrital zircons is similar to the age of the underlying Taltson
Magmatic Zone basement (Rainbird et al., 2002). A second peak of 2.6 Ga probably represent zircons
derived from nearby Archaen granitoids, some of which may have been introduced into the Proterozoic
basement as a result of crustal scale melting. Some of these zircons may be recycled from the underlying
Martin Group, which crops out on the north shores of Lake Athabasca (Ramaekers, 2004). The deficiency
of fine-grained interbeds in the majority of the Fair Point Formation suggests that sediment generated
from granitic or gneissic basement, underwent minimal chemical weathering but intense mechanical
weathering (Blair and McPherson, 1994).

Although there are no ages for the Manitou Falls Formation in Alberta, the dominant westerly
paleocurrents indicate a source from the east (Ramaekers, 1990). Detrital zircons from the Manitou Falls
Formation in the eastern Athabasca Basin are dominated by 1.83 Ga ages, characteristic of the Trans-
Hudson Orogen (Rainbird et al., 2002). The presence of minor zircon and tourmaline throughout Manitou
Falls indicates a plutonic source (Morton and Hallsworth, 1999). The overall provenance of the Manitou
Falls Formation probably reflects a composite source terrain, with the strata representing an extremely
large, low angle alluvial plain prograding from distal uplifted paleohighs associated with the Trans-
Hudson Orogen (Yeo et al., 2002).

Based on limited paleocurrent data (Ramaekers, 1990), a change in source is inferred across the Lazenby
Lake—Manitou Falls disconformity, although similar mineralogical composition and textural attributes
(e.g., grain size) of the accessory minerals in the two formations support a similar plutonic source area.
Ages were obtained from xenotime overgrowths on zircons in the correlative Wolverine Point Formation,
suggesting a minimum age of 1.66 Ga for the Lazenby Lake Formation (Rainbird et al., 2002).

5.3 Tectonostratigraphic Model

Intracratonic basins are large, circular to ovoid, and are flanked or segmented by basement-cored

arches (e.g. Howell and van der Pluijm, 1999; Aspler and Chiarenzelli, 1997; Aspler et al., 2001).

Basin fill is broadly symmetrical, with intrabasinal asymmetries related to the migration of depocentres
and syndepositional arching from allogenic processes, resulting in the superimposition of successive
processes during basin evolution (Loup and Wildi, 1994). Subsidence in intracratonic basins is driven

by tectonomagmatic processes (Leighton, 1996). Tectonic stress within a stable craton interior, relative
to the plate margins, may arise from distal plate-boundary processes, up to 2000 km away, which are
sufficient to cause crustal instabilities (Quinlan, 1987; van der Pluijm et al., 1997; Cloetingh et al., 1999).
Intraplate crustal attenuation via mantle-driven processes can be related to lithospheric thinning during
the emplacement of anorogenic intrusions (Nunn, 1994; Klein, 1995). Initial intracratonic basin—forming
processes are problematic, since lengths of basin faults are an order of magnitude too small relative to
the extension suggested by crustal thickness and subsidence (Loup and Wildi, 1994). The magnitude of
subsidence in intracratonic basins cannot be strictly accounted for by sediment and water loading (DeRito
et al., 1983). Numerous mechanisms have been proposed for basin initiation, and the processes that drive
renewed subsidence, arching and tilting are controversial (e.g., Leighton, 1996; Howell and van der
Pluijm, 1999). It is noted that climate would also affect sedimentation on a secondary level.
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It is suggested here that the subsidence of the Athabasca Group was influenced by polyphase, multi-axial
stress regimes, as represented by multiple unconformity surfaces, marking a protracted depositional
history (refer to and |13 throughout the following discussion). The formations investigated in
this study are all parts of different sequences, since they are all separated by unconformities (e.g., Yeo et
al., 2002; Ramacekers, 2004).

5.3.1 Sequence 1: Fair Point Sequence

Deposition of the Fair Point Formation corresponds to initial, short-term, rapid subsidence. Fault-
controlled deposition of the conglomerate and siltstone of the lower Fair Point Formation was probably
related to small-scale footwall uplift of pre-existing highs formed by wrench tectonics (Ramaekers, 2004).
This may be related to similar tectonics associated with deposition of the Martin Group (Ramaekers,
2004). The mechanism for initial subsidence may be related to the 1.75 Ga, southwest-trending band

of plutonism, subparallel to the Trans Hudson Orogen, that is found throughout the Churchill Province
(Peterson et al., 2002). Associated plutonic provinces may include the 1.7 Ga Nueltin granitoid and
comagmatic Pitz rhyolite (200 km northeast of the Athabasca Basin; e.g., Peterson and van Breemen,
1999); unnamed 1.76 Ga plutons beneath the Athabasca Basin (e.g., Krogh and Clark, 1987); and the
Swift Current anorogenic granitoid plutons (600 km south of the Athabasca Basin; Collerson et al., 1988).
Emplacement of the Nueltin anorogenic granitoid and temporally associated plutonic bodies resulted from
delamination of the lithospheric mantle, which caused local crustal extension along with passive mantle
upwelling (Peterson et al., 2002). This could have triggered viscoelastic relaxation of the lower crust,

as well as localized and regional lithospheric stretching (Klein, 1995). Initial stretching may have been
accommodated in the faults, and quickly replaced by thermal subsidence.

Rapid conversion in subsidence regime is marked by deposition of the northward-thickening upper Fair
Point Formation. This is probably related to ‘basin-wide’ thermal subsidence, in contrast to the lower
Fair Point Formation, which was deposited during short-term, localized fault movements. The age of the
Fair Point is unclear because the age of formation of the Athabasca Basin is poorly constrained (between
1.75-1.7 Ga), based on the occurrence of rare Pitz volcanic clasts and U-Pb dating of fracture-filled
apatite in the Fair Point Formation (Cumming et al., 1987). The general lack of syndepositional volcanic
rocks indicates that downwelling, related to second-order mantle convection cells (cold spots), was not a
dominant mechanism.

5.3.2 Sequence 2: Manitou Falls Sequence

A major basin reorganization event corresponds to the development of the Fair Point—Manitou Falls
unconformity, across which there is a change in tectonic regime. The length of time represented by this
unconformity is unclear but considered to be on the order of 1-10 m.y. The regional subsidence regime
of the Manitou Falls Formation was probably similar to that of the Fair Point Formation, with the basal,
fault-controlled, conglomerate-bearing Manitou Falls Formation in the eastern Athabasca Basin (MFa and
MFDb of Ramaekers, 1990) corresponding to a short-lived, high-subsidence regime. This was followed by
a protracted low-subsidence regime, resulting in deposition of the relatively finer and more distal Manitou
Falls units (MFc and MFd). It is apparent that the basin underwent regional westward-directed tilting, as
indicated by changes in paleocurrent directions (Ramaekers, 1990). In the study area, there is no evidence
to suggest that localized syndepositional fault movement occurred during sedimentation of the Manitou
Falls Formation. Nevertheless, the local distribution of the coarser, basal, Manitou Falls ‘c’ member
suggests that localized fault movement probably predated the Manitou Falls Formation.
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5.3.3 Sequence 3: Lazenby Lake-Wolverine Point Sequence

The driving mechanism for the development of the Manitou Falls-Lazenby Lake unconformity is unclear.
It is possible that it may be related to the emplacement of distant granitoid intrusions that resulted in uplift
of the Thompson Belt to the east (ca. 1.726—1.720 Ga; Machado, 1990). However recently, deposition

of the Lazenby Lake-Wolverine Point sequence has been postulated to have occurred around 1.66 Ga
(Rainbird et al., 2002) based on xenotime overgrowths on detrital zircons that are interpreted to be of
early diagenesis.

The production of accommodation space for this basinward thickening sequence is suggestive of thermal
subsidence regime. Subsidence was probably related to dynamic loading of the northward-convergent
Central Plains Orogeny to the south (1780-1680 Ma; Dahl et al., 1999). It is unlikely that dynamic
loading from the Yavapai Orogeny (1.79-1.69 Ga; Karlstrom and Bowring, 1988) and/or the Mazatzal
Orogeny (1.71-1.62 Ga; Karlstrom and Bowring, 1987) influenced deposition of the Lazenby Lake—
Wolverine Point sequence, as claimed by Ramaekers (2004), since the Athabasca Basin is too far removed
from these orogenic fronts.

5.4 Stratigraphy as an Exploration Guide

Unconformity-hosted uranium mineralization requires the development of a steady-state redox front

near or at the unconformity, with fluid interaction governed ultimately by porosity and permeability of

the sedimentary strata and basement rocks. The occurrence of relatively impermeable, fault-controlled
siltstone close to the unconformity could limit fluid interaction and hinder the development of the required
redox front for mineralization.

The tectonostratigraphic position of the siltstone near or at fault intersections indicates that these
locations, even though structurally favourable for exploration, are not necessarily lithostratigraphically
favourable for exploration. Proximal to the uraniferous zone at Maybelle River (drillhole MR-39), the
basal Fair Point Formation in most holes is largely deficient in siltstone and conglomerate. The similarity
in matrix grain size between the conglomerate and the massive sand suggests that both rock types are
favourable for mineralization. Because the original depositional slope probably controlled the fluvial
architecture, this may be used to locate syndepositional faults.

6 Conclusions

6.1 Stratigraphic Revision of the Lower Athabasca Group

In the Maybelle River and Net Lake areas, the Fair Point Formation has been subdivided into lower and
upper members. The lower Fair Point Formation consists of Ramaekers’ (2003, 2004) Fair Point ‘a’ and
‘b’ members. It comprises siltstone and conglomerate-dominated lithofacies, interbedded with minor
massive sandstone. The upper Fair Point Formation is dominated by massive to crudely crossbedded,
medium- to coarse-grained sandstone with minor isolated conglomerate lenses. It broadly correlates to
Ramaekers’ (2003, 2004) Fair Point ‘c’ member. Conglomerate of the lower Fair Point Formation and the
massive sandstone of the upper Fair Point Formation are probably coeval.

The majority of the Manitou Falls Formation in the study area, previously defined as Ramackers’ (1990)
Manitou Falls ‘c’ member, has been reassigned to the Manitou Falls ‘d” member. Only a thin succession
of Manitou Falls ‘c’ is locally found at the base of the Manitou Falls Formation. No stratigraphic revision
was necessary for the Lazenby Lake Formation.
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6.2 Depositional and Tectonic Implications

Local lacustrine siltstone sedimentation of the lower Fair Point Formation was probably confined to fault-
controlled paleovalleys, with the thickest deposits directly overlying coalescing fault splays. Renewed
extensional tectonic activity resulted in the deposition of syntectonic conglomerate on alluvial plains,
with the thickest conglomerate deposits also corresponding to coalescing faults. The upsection change to
interbedded sandstone and conglomerate reflects enlargement of the catchment basin and the associated
change in slope. The extensiveness of the upper Fair Point Formation sandstone supports a wide
distribution for the Jackfish Sub-Basin, with fault-controlled paleohigh development possibly related to
reactivation of Martin Group tectonics.

Deposits of the Manitou Falls ‘¢’ and ‘d’ members in the study area are probably part of a basin-wide,
low-gradient, perennial braided river system that originated from the distal Trans-Hudson Orogen
located to the east. The unconformity separating the Fair Point Formation from the Manitou Falls
Formation represents a significant time hiatus, as well as a change in the basin-scale tectonic regime.
The depositional environment of the disconformably overlying Lazenby Lake Formation is marked by a
perennial fluvial system similar to that of the Manitou Falls Formation.

Basin initiation was related to mantle-driven processes, with the subsidence regime being influenced by
multi-axial forcing and subsidence-generation that were possibly related to Nueltin granitoid intrusions
and the Pitz rhyolite of the Thelon Basin.

6.3 Economic Geology Implications

1) Alteration and other postdepositional characteristics may be important on a very localized scale. The
area of this study was too regional to show any significant findings.

2) The basal siltstone in the lower Fair Point Formation may act as an impermeable barrier or aquitard to
uranium mineralizing fluids. Its local presence may therefore be unfavourable to mineralization.

3) The alteration of the uranium prospect at Maybelle River indicates that the Maybelle River Fault is
favourable and prospective for an important uranium deposit. In contrast, the prospectively of the Net
Lake Fault is poorly known, although Ramaekers (2004) suggested that the local alteration along the
trend makes it prospective.
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Appendix 1 - Location, Stratigraphy and Drillhole Information for the Logged Cores

AGS ID | Long1 Lat1 Units present2 ?r:)ﬂ thick (Bi::fhm ent ::::h Inclination | Year | Company
FC-034 | -110.755 | 58.085 | Dev/IMF 36.88 Not present | 117.95 |-90 1977 | Eldorado
MR-04 |-110.644 |58.150 | Dev/IMF/FP/Base |40 121.5 248 -60 1986 | Uranerz
MR-05 |-110.703 |58.135 | Dev/Base 50 84.6 188 -60 1986 | Uranerz
MR-06 |-110.726 |58.124 | Dev/IMF/FP/Base | 36.7 57.1 191 -60 1986 | Uranerz
MR-07 |-110.735 |58.154 | Dev/IMF/Base 38 100.4 185 -60 1986 | Uranerz
MR-09 |-110.735 |58.169 | Dev/IMF/FP/Base |34.7 142.7 1725 | -60 1986 | Uranerz
MR-10 |-110.765 |58.174 | Dev/IMF/FP/Base |46.7 149.5 194 -60 1986 | Uranerz
MR-11 |-110.751 |58.181 | Dev/IMF/FP/Base |47.3 164 209 -60 1986 | Uranerz
MR-12 |-110.745 |58.164 | Dev/IMF/FP/Base |32 115.9 197 -90 1986 | Uranerz
MR-14 |-110.701 | 58.146 | Dev/IMF/FP/Base |62.6 101.75 185 -65 1986 | Uranerz
MR-15 |-110.671 |58.127 | Dev/IMF/FP/Base |39.7 55.5 192 -60 1986 | Uranerz
MR-16 |-110.675 |58.120 | Dev/Base 50 63.4 170 -60 1986 | Uranerz
MR-17 |-110.639 |58.098 | Dev/Base 36.5 76.3 186 -60 1986 | Uranerz
MR-18 |-110.719 |58.128 | Dev/IMF/FP/Base | 33.7 78.5 182 -90 1986 | Uranerz
MR-27 |-110.654 |58.185 |LzL/MF/FP/Base |34.8 201 278 -60 1987 | Uranerz
MR-36 |-110.674 |58.241 |LzL/MF/FP/Base |43 278.2 326 -60 1988 | Uranerz
MR-37 |-110.682 |58.269 |LzL/MF/FP/Base |68 308.4 380 -60 1988 | Uranerz
MR-61 |-110.635 |58.159 | MF/FP/Base 61.3 182.3 2558 | -60 1989 | Uranerz
MR-64 |-110.585 |58.116 | Dev/IMF/Base 28 117.8 270.3 | -60 1989 | Uranerz
MR-70 |-110.683 |58.276 |LzL/MF/FP/Base |64 339.4 4179 | -60 1989 | Uranerz
MR-71 |-110.687 |58.254 | LzL/MF/FP/Base |51 275.5 3496 | -60 1989 | Uranerz
MR-73 |-110.646 |58.174 | LzL/MF/FP/Base |31 195.3 239 -60 1990 | Uranerz
MR-76 |-110.600 |58.127 | Dev/IMF/Base 375 71.3 137 -60 1990 | Uranerz
MR-78 |-110.610 |58.138 | Dev/IMF/Base 28.9 59.5 83 -60 1990 | Uranerz
MR-81 |-110.636 |58.166 | MF/FP/Base 36.6 173.9 233 -60 1990 | Uranerz
MR-84 |-110.695 |58.289 |LzL/MF/FP/Base |39.7 338 389 -90 1990 | Uranerz

1 relative to NAD83 datum
2 see for explanation of abbreviations
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Appendix 2 - Cross-Sections and Thickness Plots

Three cross-sections are included: A-A’ runs along the Maybelle River trend, B-B’ runs along the Net
Lake trend, and C-C’ cross-cuts the two trends. All transects are shown on the diagram below.

Thickness plots for the Fair Point, Manitou Falls and Lazenby Lake formations, as well as the overlying
Devonian outlier, are included.

570000 szlzooo
I
- holpns Lazenby -
S _ MR-70 Lake g
2 MR-37 Formation 2
3 N (LzL) 3
MR-71
Manitou MR-36
Falls
Formation
(MF) Maybelle
River trend
S B S
o = - S
=
3 3
3 km
j T
510000 522000

Location of the transects of the study.
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Section A-A’ - North-south transect along the Maybelle River trend, with Fair Point and Manitou Falls formations

a) undifferentiated, or b) differentiated.
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b) occurrence and associated thickness of the upper Fair Point Formation (FPu). Note that the Fair Point Formation is absent in
the southern part of the study area and that FPI is absent in some cores along both trends (e.g., drillholes MR-10 and MR-27).
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Manitou Falls Formation thickness (bubble) plot: a) occurrence and associated thickness of the Manitou Falls “c” member. Note
that, where occurring, the unit locally reaches an average of 5 m thick but thickens to the north; b) occurrence and associated
thickness of the Manitou Falls “d” member. Note that it generally thickens to the north.
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Appendix 3 - Petrography

Forty thin sections were petrographically examined in order to characterize textural and mineralogical
composition of the lower Athabasca Group. Sample set distribution is skewed towards Manitou Falls,
with limited samples examined from FPI due to unit coarseness (difficult to cut thin sections). The
mineralogy is defined by 400 point counts per sample. Below are the abbreviations for the subsequent
terms.

Rounding:

A: angular

sA: subangular
sR: Subrounded
R: rounded

wR: well rounded

Sorting:

pS: poorly sorted

mS: moderately sorted
wS: well sorted

Grain size:

f: fine grained

m: medium grained
m: coarse grained

PSS (Primary Sedimentary Structures)
mass: massive

sR: ripple sand

Pl bedded: planar bedded.

Clays: subdivided into epitaxial (clay produced from the destruction of labile minerals such as feldspars)
and matrix (derived from the deposition muds or remobilization of epitaxial clays).
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Fair Point Formation Mineralogy
Drill Hole Info Texture Quartz Feld. |Lithics Matrix Clays

e o -
HoleID  |Depth |Rounding|Sorting 83‘;‘023‘; PSS Zt’rr;‘;’:(’; % poly tﬁf& t{;i%ram :ﬁ’argi? :/gg %detri-tal | Texture %Voids [Unit  |Name

clays |clasts
MR-06 54.6 sAtosR (pS m/m/c mass 53.25 10.25 |0.75 05 0 0.25 {30 micaceous |5.25 |FPI quartz arenite
MR-10 108.7 |sAtosR |pS m/c/c mass  |60.75 11.75 [3.25 15 1.25 0 17 micaceous |4.25 |FPu quartz arenite
MR-10 116.35 |sRtoR |mS fim/m mass |76 275 |05 0 0 0.25 |11.75 micaceous |8.75 |FPu quartz arenite
MR-14 89.5 R mS m/m/c mass  [39.19 1432 |11.35 |11.89 |0.00 0.54 [14.86 micaceous |7.25  |FPu sublitharenite
MR-37 2704 |sAtosR |pS m/m/c mass  [63.5 13.25 |0 125 |05 0 15.5 micaceous |7 FPu quartz arenite
MR-73 1733 |R pS m/clgr mass |68 12 0.5 1.75 |25 0 6 micaceous |9.75  |Fpu sublitharenite
MR-73 1875 |[sRtoR |[pS m/m/c mass 43.25 12.75 |10.25 (225 |0 2 28.75 micaceous |0.75 |FPu sub-arkose
MR-73 198.6 |[sRtoR |pS fim/m mass  |45.75 14.25 [14 2 0 1.25 [22.25 micaceous |0.25 |FPu sub-arkose
MR-84 296 sRtoR |pS m/m/c mass  |45.75 19 3 325 |0 1.25 [27.75 micaceous |0 FPu quartz arenite
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Manitou Falls Formation Mineralogy
Drill Hole Info Texture Quartz Feld. [Lithics Matrix Clays

0 i- 0 i-
Hole ID Depth  [Rounding | Sorting (CE?O/S%? PSS Z:g;lc: % poly tgsizll t{;i%ram ::/T:;ir; Z"ng %detri-tal | Texture %Voids |Unit Name

clays |clasts
MR-06 40.8 sRtoR [wS fim/m mass |79 325 |0 025 |0 0 2 micaceous |155 |MFd |quartz arenite
MR-07 83.7 R wS fim/m mass  |80.25 025 |0 0 0 0 0.75 micaceous |18.75 |MFd |quartz arenite
MR-07 93.9 R wS fim/m Sr 79 1.75 |05 0 0 0 1.75 micaceous |17 MFd  |quartz arenite
MR-10 70.6 R wS fim/m mass  |83.25 1 0 0 0 0 1.25 micaceous |14.5 |MFd |quartz arenite
MR-10 90.3 R mS m/clc Sr 76 1 0.25 15 05 0.25 |25 micaceous |17.25 |MFd |quartz arenite
MR-10 106 R mS fim/m Sr 84.75 1 0 0 0 0 15 micaceous |12.75 |MFc |quartz arenite
MR-14 6115 |[R mS fim/m-c  |Sr 78.5 0 0 0 0 0 18.25 hematite 275 |MFd |quartz arenite
MR-14 70.8 R mS fim/m-c  |Sr 84 225 |0 0 0 0 1 micaceous |12.75 |MFd |quartz arenite
mr-14 80.23 |R vwS  |fim/m mass 87 0.5 0 0 0 0 2.25 micaceous |10.25 |MFd  |quartz arenite
MR-15 46.6 sRtoR [wS fim/m mass  |84.25 1 0 025 |0 0 1.75 micaceous |12.75 |MFd |quartz arenite
MR-37 1478 |sRtoR |wS fim/m mass  [89.5 225 |0 0.5 0 0.25 |1 micaceous |6.5 MFd  |quartz arenite
MR-37 158.87 |RtowR |wS fim/m mass  |74.25 125 |0 0 0 0 4 micaceous |20.5 |MFd |quartz arenite
MR-37 207.22 (R wS fffim mass |76 175 |0 2.5 0 0.25 |2.25 micaceous |17.25 |MFc  |quartz arenite
MR-73 89.6 sRtoR [wS fim/m mass  |86.75 0.5 0 025 |0 0 45 micaceous |8 MFd  |quartz arenite
MR-73 115.3 |R wS fim/m mass 85 1.6 0 0 0 0 10.6 micaceous |4.5 MFd  |quartz arenite
MR-73 1311 |R wS fffim mass 84.5 0.75 ]0.25 0 0 0 1 micaceous |13.5 |MFd |quartz arenite
MR-76 40.4 R mS fim/m Sr 79 275 |0 0 0 0 8 micaceous |10.25 |MFd |quartz arenite
MR-76 52.08 |[sRtoR [mS ffflm Sr 79 075 |0 0 0 0 6.25 micaceous |14 MFd  |quartz arenite
MR-76 61 R wS fffim mass  |73.25 125 |0 0 0 0 2.5 micaceous |23 MFd  |quartz arenite
MR-84 1615 |R wS ffflm Sr 83.25 1 0 0 0 05 |8.75 micaceous |6.5 MFd  |quartz arenite
MR-84 197 R wS fim/m Sr 82 1 0 0 0 0 13.8 micaceous |4 MFd  |quartz arenite
MR-84 250.6 sR mS m/m/c mass 73.25 3 05 0 0 0 11.75 micaceous |11.5 MFd  |quartz arenite
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Lazenby Lake Formation Mineralogy
:?]rf': Hole Texture Quartz Feld. [Lithics Matrix Clays
e %epi- | %grani-
. . |Grain Size %mono+ |, . ; Y%omtm | %fg o o .. O :
Hole ID Depth  [Rounding | Sorting (10/50/90) PSS strained % poly |taxial  |toid dasts |28 Yodetri-tal | Texture %Voids |Unit Name
clays  |clasts
MR-37 7572 |R wS fim/m mass  [88.25 35 0 0.5 0 1 2 micaceous |4.75 |LzL quartz arenite
MR-37 86.1 sRtoR |wS fim/m mass |77.75 15 0.75 0 0 0.25 |5 micaceous |13 LzL quartz arenite
MR-37 89 sRtoR |wS ffflm Sr 76.75 0 0 0.5 0 0 4.25 hematite 19 LzL quartz arenite
MR73  [401 R V”JSS © limim  |mass (835 |2 0 125 |0 0.75 |2 micaceous |105 |LzL  |quartz arenite
MR-73 44.6 sRtoR |wS m/m/c mass |77.25 35 0 0 0 0 15 micaceous |4.25 |LzL quartz arenite
MR-73 4706 |R UV]SS to fim/m mass  [80.5 175 |0 0 0 0.25 |13 micaceous |4.5 LzL quartz arenite
MR-84 40.3 R wS ffflm mass |79 55 0 0.5 0 0 45 micaceous |10.5 |LzL quartz arenite
MR-84 61.85 |[RtowR |[mS ffflm pl? 80 0.5 0 025 |0 0.25 |16.5 micaceous |2.5 LzL quartz arenite
MR-84 83.7 R mS fim/m mass 85.75 3 0 0 0 0.25 [2.25 micaceous |8.75 |LzL quartz arenite
MR-84 111.35 |sRtoR |wS flfim mass  |85.75 1 0 15 0 15 |3 micaceous |7.25 |LzL quartz arenite
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Appendix 4 - Lithostratigraphic Breakdown of the Lower Athabasca Group

Major lithostratigraphic breaks are defined from the following parameters: maximum transported grain
size (TGS_MTGQG); mean grain size; percentage of fines (very fine sandstone and siltstone); percentage of
grains over 2mm (TGS_%>2mm); percentage of conglomerate; intraclast aggregate thickness; and matrix
clay (MatrixClay). Primary sedimentary structures are outlined. Diamond-drillholes that lack Athabasca
Group strata are omitted (e.g., drillholes MR-05, MR-16, MR-17). Non-numerical parameters are defined
below.

1. Matrix Clay
Macroscopic interstitial clay was quantifiably estimated.

N: none

T: trace evident

Tm: trace to moderate, more sections of interval have trace amounts
Mt: moderate to trace, more sections of interval have moderate amounts
M: minor amounts evident over most of the core

A: abundant as a pore fraction

2. Grain size definition

Gravel: over 30% grains greater than 2 mm

Pebbly sandstone: 5-30% grains greater than 2 mm

Sand: fine to very coarse sand, less than 5% grains greater then 2 mm
Fines: very fine sand to mud, less than 5% grains greater then 2 mm

3. Sedimentary structures definition

Massive (M): unit lacks any definable bedding structure

Indistinct (?): indistinct layering within the unit

Ripple (R): ripple crosslaminated, bedsets less than Scm thick, typically fine to medium grained
Cross-bedded (XC): crossbedded, bed sets greater than 5 cm thick, coarser than fine sand grade
Horizontally bedded (H): horizontal bedded or laminated

Planar cross-bedded (P): planar crossbedded, working criteria: thicker (0.1-2cm) planar crosslamina, often
graded

Low angle crossbedded (1): low-angle crossbedding, generally coarse grained; bedding may be crudely to
cryptically defined

Trough cross-bedded (t): trough crossbedded

Granule layer (G1): pebble layer one layer thick
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[LQ EU B Primary Sedimentary Structures
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LLK‘ E UB Primary Sedimentary Structures
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Appendix 5 - Alteration and Replacement Features, Lower Athabasca Group

Silicification and friability were quantitatively recorded on a metre-by-metre scale. Tectonic structure/
type and replacement type were recorded only where observed. Fracture counts per metre may be
overestimated, as some fractures may have been produced during drilling, extraction and boxing of the
core. MTG and matrix clay are used to facilitate lithostratigraphic breaks of the unconformity-bounded
formations that are defined in No logs are available for drillholes FC-034, MR-05, MR-16,
MR-17. Non-numerical parameters are defined below and are modified from Ramackers, 2003.

Matrix Clay

n: not visible

t: trace

tm: mostly trace, less moderate
mt: mostly moderate, less trace
m: minor to moderate

a: abundant

Silicification

n: none

w: weak

m: moderate (sparkles)
s: strong, tombstone

Friability

C: competent, hard to break

e: competent, breaks easily

f: friable; v: very friable; u: unconsolidated
h: hard, mudstone only (fingernail does not
scratch)

s: soft, Mudstone only (fingernail gouges)

Tectonic Type

ft: fault, unspecified

fd: fault, dip-slip

fs: fault, strike-slip

fr: fracture, no movement
bx: breccia

br: breccia, milled (fault conglomerate)
be: breccia, crackle

su: sandy gouge, uncemented
sc: sandy gouge, cemented

b: bedding plane

n: not determined

Tectonic Structure Cement/Fill
c: calcite

h: hematite (only if saturated)
py: pyrite

y: clay

g: gouge

sc: gouge, sandy cemented
su: gouge, sandy uncemented
qd: quartz, drusy

qo: quartz, overgrowths

o: other

n: none

Replacement Type

ms: massive

Vi vuggy

pa: patchy

d: disseminated

fi: replace rock within fault zone
fo: replace fault zone and wall rock

New Mineral

c: calcite

h: hematite (only if saturated)
py: pyrite

y: clay

g: gouge

sc: gouge, sandy cemented
su: gouge, sandy uncemented
qd: quartz, drusy

qo: quartz, overgrowths

o: other

n: none
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