GENERAL COMMENTS DEPOSIT CHARACTERIS | Deposit
Number | Material | Reserves
(1000 m³) | | Additional Comments | Texture
(%) | | | (%) | Overburden
Thickness | Deposit
Thickness | Deposit
Area | Deposit Genesis | Additional Comments | |-------------------|---|-----------------------|--------|--|----------------|------|-------|------|-------------------------|------------------------|-----------------|-----------------------------|---| | | Description | Gravel | Sand | | Gravel | Sand | Fines | Wear | (m) | (m) | (ha) | | | | 1 | Clean gravel to sandy gravel | 12,000 | 6,000 | Gravel 60 - 80%, coarse; sand mainly fine, often occurs as surface layer. | 65 | 34 | 1 | _ | 1.0 | 2.5+ | 780 | Fluvial — river terrace | Mainly quartzite clasts, low water table. | | 2 | Clean to dirty
sandy gravel | _ | _ | Exposed in valley wall — 2 m very dirty fine sand, over 5 m of very dirty sandy gravel, overlying 20 m clean sandy gravel. | 70 | 29 | 1 | - | - | 25.0 at edge of valley | ? | Glaciofluvial —
outwash | Little information available. Exact position of southern boundary is unknown. | | 3 | Sandy gravel | 80 | 17 | Entrance conglomerate (bedrock), cemented. | 80 | 17 | 3 | _ | 1.0 | 2.0+ | 5 | Bedrock | Used locally for forestry roads. Gravel is mainly quartzite. | | 4 | Sand and/or gravel | _ | - | _ 1 | - | _ | 1- | _ | _ | _ | _ | Glaciofluvial —
eskers | Little information available. | | 5 | Clean sandy gravel | 15 | 13 | Highly variable material. Deposit 50% depleted. | 51 | 45 | 4 | - | _ | 3.0+ | 2 | Glaciofluvial —
esker | Used locally for forestry roads. Coal fragments are common. | | 6 | Clean sand | 4 | 15 | _ | 22 | 77 | 1 | - | _ | 1.0+ | 2 | Fluvial — terrace | Little information. | | ⁵ 7 | Very dirty sandy
gravel to clean
sand | - | - | Highly variable material. Reserves 120,000 m ³ | - | _ | _ | - | _ | 1.0+ | 12 | Glaciofluvial —
terrace | Little information. | | 8 | Sandy gravel to gravelly sand | 171 | 126 | Clean to dirty. Gravel 50-60%, sand 35-50%. | 56 | 42 | 2 | _ | _ | 3.0 | 40 | Glaciofluvial — ice contact | Esker complex, clasts commonly up to 12 cm see also map 83F/3. | | 9 | Clean sandy gravel | 6,400 | 2,400 | Gravel 65-73%, sand 25-34%. | 72 | 27 | 1 | - | _ | 2.5 | 360 | Fluvial — valley
floor | Mainly quartzite gravels. Water table at 2.0 m. Clasts up to 40 cm. | | 10 | Clean gravel to sandy gravel | 47,000 | 17,000 | Gravel 67-83%, very coarse; sand 16-41%. | 73 | 26 | 1 | - | _ | 2.5 | 2600 | Fluvial — valley
floor | Clasts mainly quartzite and carbonates. High water table. | | - 11 | Gravel to sand | - | - | Clean to fine; reserves 200,000 m ³ . | - | | - | _ | _ | 2.0 | 12 | Fluvial — terrace | Variable texture. | | 12 | Clean sandy gravel | 350 | 190 | Gravel 40-75%; sand 23-56%. | 63 | 35 | 2 | _ | 0.5 | 4.0 | 14 | Fluvial — terrace | Water table at 4.0 m. Deleterious sandstone and shale is common. | | 13 | Clean sandy gravel | 2,900 | 1,300 | Gravel 0-77%; sand 22-97%. | 68 | 30 | 2 | _ | _ | 2.0 | 220 | Fluvial — valley
terrace | Clasts mainly quartzites with some conglomerates and sandstone. Water table at 1.5-2.5 m. | | 14 | Dirty sand | 40 | 330 | Limited information. | 10 | 83 | 7 | - | 1.0 | 2.0 | 20 | Fluvial — terrace | Coal fragments. | | | | á | | | | | * | | | | | | | **Deposit Number** — Granular deposits shown on this map may have commercial possibilities. That assumption followed from two criteria used in the mapping process: study of the area considered only granular deposits greater than one metre thick, and covering an area more than one hectare; and it only considered deposits where the mineral-aggregate thickness was greater than the overburden thickness. Although the scale of mapping did not permit investigation of all small deposits, many small deposits containing existing pits are indicated. Material Description — Sand and gravel has a variety of applications, such as concrete for construction, asphalt concrete, subbase and base course aggregate for roads, gravel and sand for road surfaces, and pit run for fill. Gradation, rock hardness, and binding characteristics, are some of the specific qualities that are considered in aggregate towards determining its end use. This map indicates these, and other, geological qualities of the sand and gravel within each deposit, but does not indicate their potential uses. The terms used in the table are defined in the figure below. Reserves — The method of calculating in cubic metres the aggregate reserves of deposits took four basic steps. First, the area, in hectares, of each deposit was determined using aerial photographs. Second, geological interpretation, sometimes supported by subsurface information, was assumed in determining the geometry of each deposit, to estimate an overall, average deposit thickness in metres. Third, geological study and limited sample analyses determined the texture (gradation) of sediments in the deposit, and an overall average percentage of gravel and sand. Finally, the volume was calculated as follows: reserve gravel (m³) = area (ha) × thickness (m) × 10,000 × % gravel; the same formula was used for sand. **Texture** — The texture of the sediment refers to the percentage of particles of various sizes. For mineral aggregate, the most important fractions are the gravel and sand. The actual dimensions of the clasts and particles in these fractions are given in the figure. The values given for a particular deposit were determined from a field estimate, or from laboratory analysis, of one or more samples from that deposit. Where more than one sample is taken the tabulated number is the mean value. Wear — The resistance of gravel-size clasts to wear or abrasion can be measured in a laboratory test (ASTM-C131, Los Angeles Abrasion Testing). The amount of material that breaks down into smaller sizes is measured and related to the original sample weight in terms of percent wear. The higher the percentage wear the more susceptible the gravel is to breakdown under stress. Gravel with a percentage wear of less than 40 is considered very resistant. Overburden Thickness — The thickness of non-economic material, or overburden, covering a deposit, sometimes is a limiting factor in the exploitation of an aggregate deposit. The tabulated values given are approximate overburden thicknesses as determined from geological investigations and subsurface testing. **Deposit Area** — Deposits in this study were delineated by interpretation of aerial photographs and the contacts should be considered approximate. Information is precise only where test holes, or geological sections, are indicated. Deposit Genesis — The genesis, or formation, of deposits is vital to the understanding of the gradational nature, extent and geometry of the deposit. This understanding forms the basis for Legend - 3 Deposit number Assumed boundary - Active or inactive pit - Alberta Geological Survey test hole - ▲ Sand or gravel exposure // Buried sand or Gravel deposit Alberta Geological Survey This is a sand and gravel resource map prepared by the Alberta Geological Survey as part of a series at a scale of 1:50,000. The series represents an ongoing aggregate inventory of Alberta which provides data for general land-use planning, land management or aggregate exploration. Please note that the delineation of deposits and calculation of reserves are approximations only. Alberta Energy and Natural Resources provides financial support for the Aggregate Inventory. REFERENCES Geology and compilation by J.C. Fox, 1982 and 1983. Additional information from L.A. Bayrock and T.H.F. Reimchen, 1980 and M.A. AGGREGATE RESOURCES PEDLEY 83F/6