These observations, coupled with the results of detailed investigations undertaken to assess the nature and degree of dissolution within the succession, resulted in intrastratal karst within the succession. To better understand the processes involved, we focused on the development of neomorphic dolomite, a key component in the diagenetic evolution of the study area.

The photomicrographs above show fluorite associated with organics and gypsum crystal terminations after anhydrite laths. This suggests a potential source for fluorine in the dolomudstones. Fluorine may also be derived from brine inclusions in halite and sulphates, which are released during dissolution.

Dedolomitization creates masses of aggrading neomorphic dolomite, which is evident in the textural characteristics commonly reported in the literature. Burial of the scarp suggests amalgamation of such beds through dissolution of intervening sulphates. The textural evolution of the dolomudstones is ongoing, with processes such as cementation of fractures, open pores, and precipitation of Sr-rich sulphate contributing to the overall diagenetic fabric.

With the amalgamation of marker beds through the dissolution of intervening sulphates, the study area exhibits a complex interplay of diagenetic processes. These processes are essential for understanding the evolution of carbonate and evaporite deposits in a Carbonate-Sulphate system.